Eulerian Walks in Temporal Graphs

Author:

Marino AndreaORCID,Silva AnaORCID

Abstract

AbstractAn Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. But what if Euler had to take a bus? In a temporal graph $$\varvec{(G,\lambda )}$$ ( G , λ ) , with $$\varvec{\lambda : E(G)}\varvec{\rightarrow } \varvec{2}^{\varvec{[\tau ]}}$$ λ : E ( G ) 2 [ τ ] , an edge $$\varvec{e}\varvec{\in } \varvec{E(G)}$$ e E ( G ) is available only at the times specified by $$\varvec{\lambda (e)}\varvec{\subseteq } \varvec{[\tau ]}$$ λ ( e ) [ τ ] , in the same way the connections of the public transportation network of a city or of sightseeing tours are available only at scheduled times. In this paper, we deal with temporal walks, local trails, and trails, respectively referring to edge traversal with no constraints, constrained to not repeating the same edge in a single timestamp, and constrained to never repeating the same edge throughout the entire traversal. We show that, if the edges are always available, then deciding whether $$\varvec{(G,\lambda )}$$ ( G , λ ) has a temporal walk or trail is polynomial, while deciding whether it has a local trail is $$\varvec{\texttt {NP}}$$ NP -complete even if $$\varvec{\tau = 2}$$ τ = 2 . In contrast, in the general case, solving any of these problems is $$\varvec{\texttt {NP}}$$ NP -complete, even under very strict hypotheses. We finally give $$\varvec{\texttt {XP}}$$ XP algorithms parametrized by $$\varvec{\tau }$$ τ for walks, and by $$\varvec{\tau +tw(G)}$$ τ + t w ( G ) for trails and local trails, where $$\varvec{tw(G)}$$ t w ( G ) refers to the treewidth of $$\varvec{G}$$ G .

Funder

MUR, PRIN

Dipartimento di Statistica, Informatica, Applicazioni, UNIFI

CNPq

STIC-AMSUD

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some polynomial subclasses of the Eulerian walk problem for a multiple graph;Modeling and Analysis of Information Systems;2024-09-13

2. NP-completeness of the Eulerian walk problem for a multiple graph;Modeling and Analysis of Information Systems;2024-03-28

3. Mengerian graphs: Characterization and recognition;Journal of Computer and System Sciences;2024-02

4. Making the Interval Membership Width of Temporal Graphs Connected and Bidirectional;Lecture Notes in Computer Science;2024

5. On Computing Optimal Temporal Branchings;Fundamentals of Computation Theory;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3