1. R. N. Toma and J. M. Kim, Bearing fault classification of induction motors using discrete wavelet transform and ensemble machine learning algorithms, Applied Sciences, 10(15) (2020) 1–21.
2. P. M. Reddy, D. M. Reddy and S. Devendiran, Bearing fault diagnosis using empirical mode decomposition, entropy based features and data mining techniques, Materials Today: Proceedings, 5(5) (2018) 11460–11475.
3. S. Mohanty, K. K. Gupta and K. S. Raju, Hurst based vibroacoustic feature extraction of bearing using EMD and VMD, Measurement, 117 (2018) 200–220.
4. L. Lin, Y. Wang and H. M. Zhou, Iterative filtering as an alternative algorithm for empirical mode decomposition, Advances in Adaptive Data Analysis, 1(4) (2009) 543–560.
5. A. Cicone and H. M. Zhou, Numerical analysis for iterative filtering with new efficient implementations based on FFT, arXiv:1802.01359 (2018).