Planar chromatographic super-hyphenations for rapid dereplication

Author:

Morlock Gertrud E.ORCID

Abstract

AbstractAnalytical chemistry offers important tools that provide insight and step-by-step understanding. However, natural samples containing many thousands of different compounds are subject to natural variance which makes it complex for artificial intelligence and human understanding. Instead of the prevailing comprehensive separation/detection approach, a prioritization approach is discussed for dereplication that focuses on the most necessary to discover. It is extremely helpful to combine on the same surface two disciplines, i.e. chemistry for separation of mixtures and biology for detection of biological effects, to filter out and prioritize the important compounds that then need to be identified. Complex mixtures are separated in parallel with imaging high-performance thin-layer chromatography, detected non-targeted with planar multiplex bioassays to prioritize compounds and elute the important ones to orthogonal column chromatography−diode array detection−high-resolution mass spectrometry for further characterization. Super-hyphenations reduce thousands of compounds to a manageable number of important active compounds. Its potential lies not only in the prioritization of compounds, but also detection of unknown compounds that were not previously the focus of analysts. An image is worth a thousand words and an effect image even more so. On-surface multiplex bioassays enable the differentiation of opposing signals/effects of compounds in a complex natural sample, which only makes understanding possible. On-surface metabolization enables the study of any changes in the effects through digestion or de-/toxification (S9 liver system). By these new tools applied on the same surface, the mechanisms of action of complex mixtures can be better understood. The latest open-source 2LabsToGo system combines the chemistry and biology laboratory in a miniaturized system developed for wider use of this innovative technique.

Funder

Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3