Pressure and heat treatment of continuous fibre reinforced thermoplastics produced by fused filament fabrication

Author:

Handwerker MichaelORCID,Wellnitz Jörg,Marzbani Hormoz,Tetzlaff Ulrich

Abstract

AbstractFused filament fabrication allows for the additive manufacturing of complex geometries without requiring moulds. However, due to large air voids and poor layer adhesion, the mechanical properties of parts manufactured using fused filament fabrication lag behind those of parts manufactured using conventional techniques. A previous study found that the tensile strength and Young’s modulus of such parts could be increased by a heat-treatment process. However, large air voids were still present after annealing. This study, therefore, investigates the influence of a post-pressure-treatment process on the mechanical performance and the air void ratio of continuous glass fibre-reinforced polyamide 6 in the directions perpendicular to the fibres. Without the treatment, Young’s modulus on the plane parallel to the printing bed is eight times higher than Young’s modulus perpendicular to it. Annealing at 1 MPa homogenises the material and leads to a significant increase of both the tensile strength (55 MPa) and Young’s modulus (5 GPa). Increasing the pressure to 3 MPa only slightly increases the mechanical performance, whereas a further increase to 6 MPa causes no significant changes.

Funder

Startupspider

Technische Hochschule Ingolstadt

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3