Abstract
AbstractFused filament fabrication allows for the additive manufacturing of complex geometries without requiring moulds. However, due to large air voids and poor layer adhesion, the mechanical properties of parts manufactured using fused filament fabrication lag behind those of parts manufactured using conventional techniques. A previous study found that the tensile strength and Young’s modulus of such parts could be increased by a heat-treatment process. However, large air voids were still present after annealing. This study, therefore, investigates the influence of a post-pressure-treatment process on the mechanical performance and the air void ratio of continuous glass fibre-reinforced polyamide 6 in the directions perpendicular to the fibres. Without the treatment, Young’s modulus on the plane parallel to the printing bed is eight times higher than Young’s modulus perpendicular to it. Annealing at 1 MPa homogenises the material and leads to a significant increase of both the tensile strength (55 MPa) and Young’s modulus (5 GPa). Increasing the pressure to 3 MPa only slightly increases the mechanical performance, whereas a further increase to 6 MPa causes no significant changes.
Funder
Startupspider
Technische Hochschule Ingolstadt
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献