Abstract
AbstractA new way of manufacturing continuous fibre-reinforced plastics is the embedding of fibres in the filament of a 3D printer. This method could be used in manufacturing composite materials with a thermoplastic matrix containing glass, Kevlar and carbon fibres. This paper provides an overview of research on the mechanical and physical properties of these parts as well as optimisation approaches of additively manufactured thermoplastics. Furthermore, applicable testing and analysis methods and their corresponding standards are included. Several studies, which represent the current state of the art, are reviewed in detail for the analysis of the mechanical performance of different fibre reinforcements. In addition, an overview of different optimisation approaches is given. The ultimate tensile strength of Kevlar and glass fibre-reinforced parts are similar to those of common Aluminium alloys whereas the carbon fibre reinforced parts outperform their aluminium counterparts. Major performance limitations include a poor adhesion between layers as well as a high air void ratio.
Funder
Technische Hochschule Ingolstadt
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献