Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements

Author:

Jayasinghe SariniORCID,Paoletti Paolo,Sutcliffe Chris,Dardis John,Jones Nick,Green Peter L.

Abstract

AbstractWhile Laser powder bed fusion (L-PBF) machines have greatly improved in recent years, the L-PBF process is still susceptible to several types of defect formation. Among the monitoring methods that have been explored to detect these defects, camera-based systems are the most prevalent. However, using only photodiode measurements to monitor the build process has potential benefits, as photodiode sensors are cost-efficient and typically have a higher sample rate compared to cameras. This study evaluates whether a combination of photodiode sensor measurements, taken during L-PBF builds, can be used to predict measures of the resulting build quality via a purely data-based approach. Using several unsupervised clustering approaches build density is classified with up to 93.54% accuracy using features extracted from three different photodiodes, as well as observations relating to the energy transferred to the material. Subsequently, a supervised learning method (Gaussian Process regression) is used to directly predict build density with a RMS error of 3.65%. The study, therefore, shows the potential for machine-learning algorithms to predict indicators of L-PBF build quality from photodiode build measurements only. This study also shows that, relative to the L-PBF process parameters, photodiode measurements can contribute to additional information regarding L-PBF part quality. Moreover, the work herein describes approaches that are predominantly probabilistic, thus facilitating uncertainty quantification in machine-learnt predictions of L-PBF build quality.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3