Tailoring Laser Powder Bed Fusion Process Parameters for Standard and Off-Size Ti6Al4V Metal Powders: A Machine Learning Approach Enhanced by Photodiode-Based Melt Pool Monitoring

Author:

Liravi Farima1,Soo Sebastian1ORCID,Toorandaz Sahar1,Taherkhani Katayoon1ORCID,Habibnejad-Korayem Mahdi2,Toyserkani Ehsan1ORCID

Affiliation:

1. Multi-Scale Additive Manufacturing (MSAM) Laboratory, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. AP&C, Colibrium Additive, A GE Aerospace Company, Montreal, QC J7H 1R8, Canada

Abstract

An integral part of laser powder bed fusion (LPBF) quality control is identifying optimal process parameters tailored to each application, often achieved through time-consuming and costly experiments. Melt pool dynamics further complicate LPBF quality control due to their influence on product quality. Using machine learning and melt pool monitoring data collected with photodiode sensors, the goal of this research was to efficiently customize LPBF process parameters. A novel aspect of this study is the application of standard and off-size powder feedstocks. Ti6Al4V (Ti64) powder was used in three size ranges of 15–53 µm, 15–106 µm, and 45–106 µm to print the samples. This facilitated the development of a process parameters tailoring system capable of handling variations in powder size ranges. Ultimately, per each part, the associated set of light intensity statistical signatures along with the powder size range and the parts’ density, surface roughness, and hardness were used as inputs for three regressors of Feed-Forward Neural Network (FFN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The laser power, laser velocity, hatch distance, and energy density of the parts were predicted by the regressors. According to the results obtained on unseen samples, RF demonstrated the best performance in the prediction of process parameters.

Funder

FedDev Ontario

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3