Abstract
AbstractMaterial extrusion (MEX), also commonly referred to as fused deposition modeling (FDM) or fused filament fabrication (FFF) is currently one of the most commonly used additive manufacturing techniques. The quality of the 3D-printed objects fabricated by MEX methods highly relies on various printing parameters, one of which is the so-called filament extrusion multiplier (k). In this study, 3D-printed parts were prepared by MEX technique during which the material feeding rate was adjusted by varying the extrusion multiplier in the range of 97–105% (k = 0.97–1.05). The fabricated parts were tested for their geometrical, structural, mechanical, and thermal conductivity properties. Based on computed tomographic analysis and scanning electron microscopic images, increasing the k parameter resulted in smaller voids, along with gradually decreasing porosity (from 5.82 to 0.05%). Parallel to the decreasing defects, the thermal conductivity of the parts improved from 0.157 to 0.188 W/mK as determined by light-flash analysis technique. On the other hand, when k was set to ≥ 1.03 the geometrical accuracy declined, the size of the specimens considerably increased relative to the nominal values, especially in the X–Y directions due to excess material getting “squeezed” on the sides of the specimens. This latter phenomenon also resulted in the formation of a number of stress concentration sites, which manifested in the decrease of mechanical properties. Accordingly, the tensile, flexural, and impact strength of the samples improved up to k = 1.03; however, above that it dropped considerably.
Funder
Magyar Tudományos Akadémia
National Research, Development and Innovation Office
Széchenyi István University
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196
2. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89
3. Kocsis B, Fekete I, Varga LK (2020) Metallographic and magnetic analysis of direct laser sintered soft magnetic composites. J Magn Magn Mater 501:166425
4. Hatos I, Fekete I, Ibriksz T, Kovács JG, Maros MB, Hargitai H (2018) Surface modification and wear properties of direct metal laser sintered hybrid tools used in moulds. J Mech Eng 64:121–129
5. Medel F, Abad J, Esteban V (2022) Stiffness and damping behavior of 3D printed specimens. Polym Testing 109:107529
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献