Experimental study on the effect of filament-extrusion rate on the structural, mechanical and thermal properties of material extrusion 3D-printed polylactic acid (PLA) products

Author:

Lendvai LászlóORCID,Fekete ImreORCID,Rigotti DanieleORCID,Pegoretti AlessandroORCID

Abstract

AbstractMaterial extrusion (MEX), also commonly referred to as fused deposition modeling (FDM) or fused filament fabrication (FFF) is currently one of the most commonly used additive manufacturing techniques. The quality of the 3D-printed objects fabricated by MEX methods highly relies on various printing parameters, one of which is the so-called filament extrusion multiplier (k). In this study, 3D-printed parts were prepared by MEX technique during which the material feeding rate was adjusted by varying the extrusion multiplier in the range of 97–105% (k = 0.97–1.05). The fabricated parts were tested for their geometrical, structural, mechanical, and thermal conductivity properties. Based on computed tomographic analysis and scanning electron microscopic images, increasing the k parameter resulted in smaller voids, along with gradually decreasing porosity (from 5.82 to 0.05%). Parallel to the decreasing defects, the thermal conductivity of the parts improved from 0.157 to 0.188 W/mK as determined by light-flash analysis technique. On the other hand, when k was set to ≥ 1.03 the geometrical accuracy declined, the size of the specimens considerably increased relative to the nominal values, especially in the X–Y directions due to excess material getting “squeezed” on the sides of the specimens. This latter phenomenon also resulted in the formation of a number of stress concentration sites, which manifested in the decrease of mechanical properties. Accordingly, the tensile, flexural, and impact strength of the samples improved up to k = 1.03; however, above that it dropped considerably.

Funder

Magyar Tudományos Akadémia

National Research, Development and Innovation Office

Széchenyi István University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3