Abstract
AbstractNowadays additive manufacturing is affected by a rapid expansion of possible applications. It is defined as a set of technologies that allow the production of components from 3D digital models in a short time by adding material layer by layer. It shows enormous potential to support wind musical instruments manufacturing because the design of complex shapes could produce unexplored and unconventional sounds, together with external customization capabilities. The change in the production process, material and shape could affect the resulting sound. This work aims to compare the music performances of 3D-printed trombone mouthpieces using both Fused Deposition Modelling and Stereolithography techniques, compared to the commercial brass one. The quantitative comparison is made applying a Design of Experiment methodology, to detect the main additive manufacturing parameters that affect the sound quality. Digital audio processing techniques, such as spectral analysis, cross-correlation and psychoacoustic analysis in terms of loudness, roughness and fluctuation strength have been applied to evaluate sounds. The methodology herein applied could be used as a standard for future studies on additively manufactured musical instruments.
Funder
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献