Micromechanical Models for FDM 3D-Printed Polymers: A Review

Author:

Bol Rowin J. M.1ORCID,Šavija Branko1ORCID

Affiliation:

1. Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

Abstract

Due to its large number of advantages compared to traditional subtractive manufacturing techniques, additive manufacturing (AM) has gained increasing attention and popularity. Among the most common AM techniques is fused filament fabrication (FFF), usually referred to by its trademarked name: fused deposition modeling (FDM). This is the most efficient technique for manufacturing physical three-dimensional thermoplastics, such that FDM machines are nowadays the most common. Regardless of the 3D-printing methodology, AM techniques involve layer-by-layer deposition. Generally, this layer-wise process introduces anisotropy into the produced parts. The manufacturing procedure creates parts possessing heterogeneities at the micro (usually up to 1 mm) and meso (mm to cm) length scales, such as voids and pores, whose size, shape, and spatial distribution are mainly influenced by the so-called printing process parameters. Therefore, it is crucial to investigate their influence on the mechanical properties of FDM 3D-printed parts. This review starts with the identification of the printing process parameters that are considered to affect the micromechanical composition of FDM 3D-printed polymers. In what follows, their (negative) influence is attributed to characteristic mechanical properties. The remainder of this work reviews the state of the art in geometrical, numerical, and experimental analyses of FDM-printed parts. Finally, conclusions are drawn for each of the aforementioned analyses in view of microstructural modeling.

Funder

European Research Council

Delft University of Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference53 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3