Assessment of glomerular morphological patterns by deep learning algorithms

Author:

Weis Cleo-AronORCID,Bindzus Jan Niklas,Voigt Jonas,Runz Marlen,Hertjens Svetlana,Gaida Matthias M.,Popovic Zoran V.,Porubsky Stefan

Abstract

Abstract Background Compilation of different morphological lesion signatures is characteristic of renal pathology. Previous studies have documented the potential value of artificial intelligence (AI) in recognizing relatively clear-cut glomerular structures and patterns, such as segmental or global sclerosis or mesangial hypercellularity. This study aimed to test the capacity of deep learning algorithms to recognize complex glomerular structural changes that reflect common diagnostic dilemmas in nephropathology. Methods For this purpose, we defined nine classes of glomerular morphological patterns and trained twelve convolutional neuronal network (CNN) models on these. The two-step training process was done on a first dataset defined by an expert nephropathologist (12,253 images) and a second consensus dataset (11,142 images) defined by three experts in the field. Results The efficacy of CNN training was evaluated using another set with 180 consensus images, showing convincingly good classification results (kappa-values 0.838–0.938). Furthermore, we elucidated the image areas decisive for CNN-based decision making by class activation maps. Finally, we demonstrated that the algorithm could decipher glomerular disease patterns coinciding in a single glomerulus (e.g. necrosis along with mesangial and endocapillary hypercellularity). Conclusions In summary, our model, focusing on glomerular lesions detectable by conventional microscopy, is the first sui generis to deploy deep learning as a reliable and promising tool in recognition of even discrete and/or overlapping morphological changes. Our results provide a stimulus for ongoing projects that integrate further input levels next to morphology (such as immunohistochemistry, electron microscopy, and clinical information) to develop a novel tool applicable for routine diagnostic nephropathology.

Funder

Medizinische Fakultät Mannheim der Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3