Abstract
Background Histologic examination of fixed renal tissue is widely used to assess morphology and the progression of disease. Commonly reported metrics include glomerular number and injury. However, characterization of renal histology is a time-consuming and user-dependent process. To accelerate and improve the process, we have developed a glomerular localization pipeline for trichrome-stained kidney sections using a machine learning image classification algorithm.Methods We prepared 4-μm slices of kidneys from rats of various genetic backgrounds that were subjected to different experimental protocols and mounted the slices on glass slides. All sections used in this analysis were trichrome stained and imaged in bright field at a minimum resolution of 0.92 μm per pixel. The training and test datasets for the algorithm comprised 74 and 13 whole renal sections, respectively, totaling over 28,000 glomeruli manually localized. Additionally, because this localizer will be ultimately used for automated assessment of glomerular injury, we assessed bias of the localizer for preferentially identifying healthy or damaged glomeruli.Results Localizer performance achieved an average precision and recall of 96.94% and 96.79%, respectively, on whole kidney sections without evidence of bias for or against glomerular injury or the need for manual preprocessing.Conclusions This study presents a novel and robust application of convolutional neural nets for the localization of glomeruli in healthy and damaged trichrome-stained whole-renal section mounts and lays the groundwork for automated glomerular injury scoring.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献