Abstract
AbstractWe consider moduli spaces of plane quartics marked with various structures such as Cayley octads, Aronhold heptads, Steiner complexes and Göpel subsets and determine their cohomology. This answers a series of questions of Jesse Wolfson. We also count points of these moduli spaces over finite fields of odd characteristic.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Ahmadinezhad, H., Cheltsov, I., Park, J., Shramov, C.: Double Veronese cones with 28 nodes (2019). arXiv:1910.10533
2. Artin, E.: Geometric Algebra. Interscience, New York (1957)
3. Baker, M., Len, Y., Morrison, R., Pflueger, N., Ren, Q.: Bitangents of tropical plane quartic curves. Math. Z. 282(3–4), 1017–1031 (2016)
4. Banwait, B., Fité, F., Loughran, D.: Del Pezzo surfaces over finite fields and their Frobenius traces. Math. Proc. Cambridge Philos. Soc. 167(1), 35–60 (2019)
5. Bergström, J., Bergvall, O.: The equivariant Euler characteristic of $$\cal{A}_3[2]$$. Ann. Sc. Norm. Super. Pisa Cl. Sci. 20(4), 1345–1357 (2020)