Author:
BANWAIT BARINDER,FITÉ FRANCESC,LOUGHRAN DANIEL
Abstract
AbstractLet S be a smooth cubic surface over a finite field $\mathbb{F}$q. It is known that #S($\mathbb{F}$q) = 1 + aq + q2 for some a ∈ {−2, −1, 0, 1, 2, 3, 4, 5, 7}. Serre has asked which values of a can arise for a given q. Building on special cases treated by Swinnerton–Dyer, we give a complete answer to this question. We also answer the analogous question for other del Pezzo surfaces, and consider the inverse Galois problem for del Pezzo surfaces over finite fields. Finally we give a corrected version of Manin's and Swinnerton–Dyer's tables on cubic surfaces over finite fields.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献