Abstract
AbstractLet H be a 3-uniform hypergraph of order n with clique number $$\omega (H)=k$$
ω
(
H
)
=
k
. Assume that the union of the k-cliques of H equals its vertex set, the intersection of all maximum cliques of H is empty, but the intersection of all but one k-clique is non-empty. For fixed $$m=n-k$$
m
=
n
-
k
, Szemerédi and Petruska conjectured the sharp bound $$n\hbox {\,\,\char 054\,\,}{m+2\atopwithdelims ()2}$$
n
6
m
+
2
2
. In this note the conjecture is verified for $$m=2,3$$
m
=
2
,
3
and 4.
Funder
ELKH Alfréd Rényi Institute of Mathematics
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hungar. 16, 447–452 (1965)
2. Erdős, P., Gallai, T.: On the maximal number of vertices representing the edges of a graph. Közl. MTA Mat. Kutató Int. Budapest 6, 181–203 (1961)
3. Gyárfás, A., Lehel, J.: Order plus size of $$\tau $$-critical graphs. J. Graph Theory 96(1), 85–86 (2020)
4. Gyárfás, A., Lehel, J., Tuza, Zs.: Upper bound on the order of $$\tau $$-critical hypergraphs. J. Combin. Theory Ser. B 33(2), 161–165 (1982)
5. Jobson, A., Kézdy, A., Lehel, J.: Eckhoff’s problem on planar convex sets (2019) (note)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献