Eckhoff's Problem on Convex Sets in the Plane
-
Published:2021-08-27
Issue:3
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Jobson Adam S.,Kézdy André E.,Lehel Jenő
Abstract
Eckhoff proposed a combinatorial version of the classical Hadwiger–Debrunner $(p,q)$-problems as follows. Let ${\cal F}$ be a finite family of convex sets in the plane and let $m\geqslant 1$ be an integer. If among every ${m+2\choose 2}$ members of ${\cal F}$ all but at most $m-1$ members have a common point, then there is a common point for all but at most $m-1$ members of ${\cal F}$. The claim is an extension of Helly's theorem ($m=1$). The case $m=2$ was verified by Nadler and by Perles. Here we show that Eckhoff 's conjecture follows from an old conjecture due to Szemerédi and Petruska concerning $3$-uniform hypergraphs. This conjecture is still open in general; its solution for a few special cases answers Eckhoff's problem for $m=3,4$. A new proof for the case $m=2$ is also presented.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献