Mathematical modelling of thermoelasticity problems for thin biperiodic cylindrical shells

Author:

Tomczyk B.,Gołąbczak M.ORCID,Litawska A.,Gołąbczak A.

Abstract

AbstractThe objects of consideration are thin linearly thermoelastic Kirchhoff-Love-type circular cylindrical shells having a periodically microheterogeneous structure in circumferential and axial directions (biperiodic shells). The aim of this contribution is to formulate and discuss two new averaged mathematical models for the analysis of selected dynamic thermoelasticity problems for the shells under consideration: the non-asymptotictolerance and the consistent asymptotic models. The starting equations are the well-known governing equations of linear Kirchhoff-Love theory of thin elastic cylindrical shells combined with Duhamel–Neumann thermoelastic constitutive relations and coupled with the known linearized Fourier heat conduction equation in which the heat sources are neglected. For the microperiodic shells under consideration, the starting equations mentioned above have highly oscillating, non-continuous and periodic coefficients. The tolerance model is derived applying the tolerance averaging technique and a certain extension of the known stationary action principle. It has constant coefficients depending also on a cell size. Hence, this model makes it possible to study the effect of a microstructure size on the global shell thermoelasticity (the length-scale effect). The consistent asymptotic model is obtained using the consistent asymptotic approach. It has constant coefficients being independent of the period lengths. Moreover, the comparison between the tolerance model for biperiodic shells proposed here and the known tolerance model for cylindrical shells with a periodic structure in the circumferential direction only (uniperiodic shells) is presented.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3