Variational regularization of damage models based on the emulated RVE

Author:

Schwarz Stephan,Junker Philipp,Hackl Klaus

Abstract

AbstractMaterial models exhibiting softening effects due to damage or localization share the problem of leading to ill-posed boundary value problems that lead to physically meaningless, mesh-dependent finite element results. It is thus necessary to apply regularization techniques that couple local behavior, described, e.g., by internal variables, at a spatial level. The common way to do this is to take into account higher gradients of the field variables, thus introducing an internal length scale. In this paper, we suggest a different approach to regularization that does not make use of any nonlocal enhancement like the inclusion of higher gradients or integration over local sub-domains nor of any classical viscous effects. Instead we perform an appropriate relaxation of the (condensed) free energy in a time-incremental setting which leads to a modified energy that is coercive and satisfies quasiconvexity in an approximate way. Thus, in every time increment a regular boundary value problem is solved. The proposed approach holds the same advantage as other methods, but with less numerical effort. We start with the theoretical derivation, discuss a rate-independent version of the proposed model and present details of the numerical treatment. Finally, we give finite element results that demonstrate the efficiency of this new approach.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3