Application of Anaerobic Co-digestion of Brewery by-Products for Biomethane and Bioenergy Production in a Biorefinery Concept

Author:

Sganzerla William GustavoORCID,Tena Miriam,Sillero Leonor,Magrini Flaviane Eva,Sophiatti Igor Vinicius Machado,Gaio Juliano,Paesi Suelen,Forster-Carneiro Tânia,Solera Rosario,Perez Montserrat

Abstract

AbstractThis study investigated the anaerobic co-digestion (AcoD) of brewery by-products for biomethane and bioenergy recovery, focusing on operational performance evaluation, kinetic analysis, microbial metataxonomic, and metabolic function prediction. The biochemical methane potential was conducted under mesophilic (35 °C) and methanogenic conditions (pH 7.5) by mixing brewery wastewater and sludge from the brewery wastewater treatment plant (1:1, v/v), following the addition (2.5 – 12.5 %, w/v) of brewer’s spent grains (BSG). The results demonstrate that the highest methane yield (88.02 mL CH4/g TVS) was obtained with 12.5 % BSG, which was 20.66-fold higher than the control reactor operated with wastewater and sludge (4.26 mL CH4/g TVS). The bioenergy recovery from biomethane could generate electricity (0.348 kWh/kg TVS) and heat (1556 MJ/kg TVS), avoiding greenhouse gas emissions (0.114 kg CO2-eq/kg TVS). The microbial community dynamics revealed a predominance of Halobacterota, Chloroflexi, and Euryarchaeota phylum. The genera Methanosaeta and Methanobacterium, and the Anaerolineaceae family predominated in the AcoD process. The metabolic function prediction showed the presence of genes (K01895, K00193, K00625, and K00925) associated with the direct activation of acetate in the acetoclastic pathway and methane production. Finally, the data obtained provide a perspective on using brewery by-products for bioenergy production in a biorefinery concept, reducing the environmental impacts and contributing to the circular bioeconomy transition of the beer industry. Graphical abstract

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Universidad de Cadiz

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3