Abstract
AbstractWe present a model of how counting is learned based on the ability to perform a series of specific steps. The steps require conceptual knowledge of three components: numerosity as a property of collections; numerals; and one-to-one mappings between numerals and collections. We argue that establishing one-to-one mappings is the central feature of counting. In the literature, the so-called cardinality principle has been in focus when studying the development of counting. We submit that identifying the procedural ability to count with the cardinality principle is not sufficient, but only one of the several steps in the counting process. Moreover, we suggest that some of these steps may be facilitated by the external organization of the counting situation. Using the methods of situated cognition, we analyze how the balance between external and internal representations will imply different loads on the working memory and attention of the counting individual. This analysis will show that even if the counter can competently use the cardinality principle, counting will vary in difficulty depending on the physical properties of the elements of collection and on their special arrangement. The upshot is that situated factors will influence counting performance.
Funder
Warsaw University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Philosophy,Experimental and Cognitive Psychology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献