Funder
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Reference67 articles.
1. Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., & Wilby, R. L. (2012). Two decades of anarchy? Emerging themes of outstanding challenges for neural network river forecasting. Progressive Physical Geography, 36(4), 480–513.
2. Abudu, S., King, J. P., & Sheng, Z. P. (2012). Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande. Journal of American Water Resources Association, 48(1), 10–23.
3. Antanasijević, D., Pocajt, V., Povrenović, D., Perić-Grujić, A., & Ristić, M. (2013). Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environmental Science and Pollution Research, 20, 9006–9013.
4. Astel, A., Tksakouski, S., Barbieri, P., & Simeonov, V. (2007). Comparison of self-organizing maps classification approach with cluster and principal component analysis for large environmental data sets. Water Research, 41, 4566–4578.
5. Azhar, S. C., Aris, A. Z., Yusoff, M. K., Ramli, M. F., & Juahir, H. (2015). Classification of river water quality using multivariate analysis. Procedia Environmental Sciences, 30, 79–84.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献