Scrutinizing different predictive modeling validation methodologies and data-partitioning strategies: new insights using groundwater modeling case study

Author:

Lal Alvin,Sharan Ashneel,Sharma Krishneel,Ram Arishma,Roy Dilip Kumar,Datta Bithin

Abstract

AbstractGroundwater salinity is a critical factor affecting water quality and ecosystem health, with implications for various sectors including agriculture, industry, and public health. Hence, the reliability and accuracy of groundwater salinity predictive models are paramount for effective decision-making in managing groundwater resources. This pioneering study presents the validation of a predictive model aimed at forecasting groundwater salinity levels using three different validation methods and various data partitioning strategies. This study tests three different data validation methodologies with different data-partitioning strategies while developing a group method of data handling (GMDH)-based model for predicting groundwater salinity concentrations in a coastal aquifer system. The three different methods are the hold-out strategy (last and random selection), k-fold cross-validation, and the leave-one-out method. In addition, various combinations of data-partitioning strategies are also used while using these three validation methodologies. The prediction model’s validation results are assessed using various statistical indices such as root mean square error (RMSE), means squared error (MSE), and coefficient of determination (R2). The results indicate that for monitoring wells 1, 2, and 3, the hold-out (random) with 40% data partitioning strategy gave the most accurate predictive model in terms of RMSE statistical indices. Also, the results suggested that the GMDH-based models behave differently with different validation methodologies and data-partitioning strategies giving better salinity predictive capabilities. In general, the results justify that various model validation methodologies and data-partitioning strategies yield different results due to their inherent differences in how they partition the data, assess model performance, and handle sources of bias and variance. Therefore, it is important to use them in conjunction to obtain a comprehensive understanding of the groundwater salinity prediction model's behavior and performance.

Funder

James Cook University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3