Abstract
AbstractWe present a theoretical background for heavy element quantification through the intensive analysis of beam hardening (cupping artifacts) in X-ray computed tomography (CT) images. Cupping artifacts resulting from X-ray CT using a polychromatic X-ray source are quantitatively analyzed with an analytical solution for a cylindrical sample of a homogeneous aqueous solution/suspension containing a heavy element. The theoretical solution reveals that the severity of cupping artifacts is strongly dependent on the sample chemistry and the acceleration voltage of the X-ray tube. Careful analysis of this dependency enabled simultaneous determination of the atomic number and molar concentration of the heavy element within a particular estimation error range. Significant improvement in terms of the accuracy of determining the atomic number was achieved by employing double-exposure X-ray CT.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Environmental Chemistry,Chemistry (miscellaneous),Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献