Beyond digital transformation: a multi-mixed methods study on big data analytics capabilities and innovation in enhancing organizational performance

Author:

Orero-Blat Maria,Palacios-Marqués Daniel,Leal-Rodríguez Antonio Luis,Ferraris Alberto

Abstract

AbstractDigital transformation (DT) and Big Data Analytics Capabilities (BDAC) enable SMEs to adapt to rapidly changing markets, innovate, and maintain relevance in the digital age. This research explores the impact of DT on SME performance through the lens of BDAC and innovation, from a multi-methods approach and applying the dynamic capabilities view. It asserts that simply investing in DT doesn't ensure enhanced performance. Analyzing 183 Spanish SMEs from various sectors, the study highlights the need for creating specific conditions that enable DT to positively impact performance. The integration of PLS-SEM and fsQCA methodologies provides a comprehensive analysis of BDAC as pivotal in optimizing SME performance through DT, emphasizing the necessity of strategic alignment with innovation. This nuanced approach, combining the predictive power of PLS-SEM and the configurational insights of fsQCA, demonstrates that investment in DT alone is insufficient without fostering conditions conducive to innovation. Our empirical insights offer actionable guidance for managers utilizing BDA or contemplating technological investments to elevate firm performance which go in the direction of increasing their innovation capabilities. Additionally, these findings equip policymakers with a nuanced understanding, enabling the design of tailored measures promoting DT in SMEs anchored in the nuances of BDAC and innovation capabilities.

Funder

Universitat de Valencia

Publisher

Springer Science and Business Media LLC

Reference112 articles.

1. Akhtar P, Chen H, Ali M, Ali T (2019) Investigating the role of big data analytics capabilities in promoting firm performance: an empirical study of Chinese and Pakistani firms. Inf Syst Front 21:681–697

2. Almodóvar P, Nguyen QTK, Verbeke A (2021) An integrative approach to international inbound sources of firm-level innovation. J World Bus 53:1–12

3. Backes-Gellner U, Kluike M, Pull K, Schneider MR, Teuber S (2016) Human resource management andradical innovation: a fuzzy-set QCA of US multinationals in Germany, Switzerland, and the UK. Journal of Business Economics 86:751–772

4. Baiyere AS, Salmela H, Tapanainen T (2020) Digital transformation and the new logics of business process management. Eur J Inf Syst 29:238–259

5. Barlette Y, Bailette D (2022) Big data analytics for competitive advantage: conceptual framework and research agenda. J Bus Res 144:554–567

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3