Abstract
Abstract
Purpose
Classification of focal skeleton/bone marrow uptake (BMU) can be challenging. The aim is to investigate whether an artificial intelligence–based method (AI), which highlights suspicious focal BMU, increases interobserver agreement among a group of physicians from different hospitals classifying Hodgkin’s lymphoma (HL) patients staged with [18F]FDG PET/CT.
Methods
Forty-eight patients staged with [18F]FDG PET/CT at Sahlgenska University Hospital between 2017 and 2018 were reviewed twice, 6 months apart, regarding focal BMU. During the second time review, the 10 physicians also had access to AI-based advice regarding focal BMU.
Results
Each physician’s classifications were pairwise compared with the classifications made by all the other physicians, resulting in 45 unique pairs of comparisons both without and with AI advice. The agreement between the physicians increased significantly when AI advice was available, which was measured as an increase in mean Kappa values from 0.51 (range 0.25–0.80) without AI advice to 0.61 (range 0.19–0.94) with AI advice (p = 0.005). The majority of the physicians agreed with the AI-based method in 40 (83%) of the 48 cases.
Conclusion
An AI-based method significantly increases interobserver agreement among physicians working at different hospitals by highlighting suspicious focal BMU in HL patients staged with [18F]FDG PET/CT.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献