RECOMIA—a cloud-based platform for artificial intelligence research in nuclear medicine and radiology

Author:

Trägårdh ElinORCID,Borrelli Pablo,Kaboteh Reza,Gillberg Tony,Ulén Johannes,Enqvist Olof,Edenbrandt Lars

Abstract

Abstract Background Artificial intelligence (AI) is about to transform medical imaging. The Research Consortium for Medical Image Analysis (RECOMIA), a not-for-profit organisation, has developed an online platform to facilitate collaboration between medical researchers and AI researchers. The aim is to minimise the time and effort researchers need to spend on technical aspects, such as transfer, display, and annotation of images, as well as legal aspects, such as de-identification. The purpose of this article is to present the RECOMIA platform and its AI-based tools for organ segmentation in computed tomography (CT), which can be used for extraction of standardised uptake values from the corresponding positron emission tomography (PET) image. Results The RECOMIA platform includes modules for (1) local de-identification of medical images, (2) secure transfer of images to the cloud-based platform, (3) display functions available using a standard web browser, (4) tools for manual annotation of organs or pathology in the images, (5) deep learning-based tools for organ segmentation or other customised analyses, (6) tools for quantification of segmented volumes, and (7) an export function for the quantitative results. The AI-based tool for organ segmentation in CT currently handles 100 organs (77 bones and 23 soft tissue organs). The segmentation is based on two convolutional neural networks (CNNs): one network to handle organs with multiple similar instances, such as vertebrae and ribs, and one network for all other organs. The CNNs have been trained using CT studies from 339 patients. Experienced radiologists annotated organs in the CT studies. The performance of the segmentation tool, measured as mean Dice index on a manually annotated test set, with 10 representative organs, was 0.93 for all foreground voxels, and the mean Dice index over the organs were 0.86 (0.82 for the soft tissue organs and 0.90 for the bones). Conclusion The paper presents a platform that provides deep learning-based tools that can perform basic organ segmentations in CT, which can then be used to automatically obtain the different measurement in the corresponding PET image. The RECOMIA platform is available on request at www.recomia.org for research purposes.

Funder

Knut och Alice Wallenbergs Stiftelse

Region Skåne

Medicinska Fakulteten, Lunds Universitet

Sahlgrenska Akademin

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3