Optimizing biochar addition for vermicomposting: a comprehensive evaluation of earthworms’ activity, N2O emissions and compost quality

Author:

Wu Yupeng,Li Qinfen,Zheng Yong,Xiong Xingjun,Chen Yunfeng,Shaaban MuhammadORCID,Hu Ronggui

Abstract

AbstractBiochar addition has been widely used in the field to mitigate soil nitrous oxide (N2O) emissions, and can be considered as a potential method to reduce N2O emissions during vermicomposting. However, excessive biochar addition may inhibit earthworms’ activity. Thus, it is crucial to clarify the optimum addition volumes of biochar during vermicomposting. This study evaluated the impact of addition of various amounts of biochar (0, 5, 10, 15, 20 and 25% of total amount of feedstock) on earthworms’ (Eiseniafetida) activity, N2O emission and compost quality during vermicomposting. Compared with the treatment without biochar added, 5% of biochar application significantly increased earthworm total biomass (from 177.5 to 202.2 g pot−1), and cumulative burrowing activity (from 47.0% to 52.2% pixel per terrarium). The increased earthworms activity stimulated the vermicomposting process and led to the best quality of compost, which showed the highest total nutrient content (5.38%) and a significantly higher germination percentage of seeds (88%). Although N2O emissions were slightly increased by 5% biochar addition, a non-significant difference was found between the treatment with 5% biochar and the treatment without biochar added. On the contrary, 20% and 25% biochar addition not only lowered N2O emissions, but also significantly decreased the quality of compost. The results suggest that 5% biochar application is an appropriate amount to improve the quality of compost without significant N2O emissions. Graphical Abstract

Funder

Major Science and Technology Program of Hainan Province

National Natural Science Foundation of China

Yunan Science and Technology Talents and Platform Program

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3