Biochar-induced changes in the soil diazotroph community abundance and structure in a peanut field trial

Author:

Chen Kun,Li Na,Zhang Shiyu,Liu Ning,Yang Jinfeng,Zhan Xiumei,Han Xiaori

Abstract

AbstractBiological nitrogen fixation (BNF) can help replenish available nitrogen (N) in cropland and reduce the use of chemical N fertilizers, with diazotrophs playing an important role. However, the response of diazotroph community and BNF activity in biochar amendment soil, especially in the deep soil horizon, are poorly understood. In this study, soil samples were collected from topsoil (0–20 cm) and subsoil (20–40 cm) in the field experiment (established in 2013) comprising treatments with no chemical fertilizer (CK), chemical fertilizer (NPK), biochar (BC), and biochar plus chemical fertilizers (BNPK). Here, we investigated the diazotroph community using real-time PCR and high-throughput sequencing of the nifH gene, and assessed the soil N2 fixation rate (RNfix) using acetylene reduction assay (ARA). Results showed that in the topsoil, the treatments with biochar significantly increased nifH gene copies and RNfix, which was consistent with the increased soil organic matter (SOM), total carbon-to-nitrogen ratio (C/N), dissolved organic carbon (DOC) and pH. In the subsoil, applying chemical fertilizers (NPK) strongly decreased RNfix, but had no effect on diazotroph abundance; in contrast, biochar application (BC) had no effect on RNfix, but suppressed the growth of bacteria and diazotrophs while increasing the abundance of Rhizobiales order. Diazotroph and bacterial gene copies were significantly and positively correlated in both top- and sub-soil, and they were mainly influenced by SOM and total nitrogen (TN). In addition, soil nitrate nitrogen (NO3–N) was the major factor in shaping the vertical stratification of diazotroph community structure. Although nifH gene abundance was significantly correlated with RNfix in the topsoil, the structure equation modeling (SEM) showed the highest correlation between diazotroph community structure and RNfix. Hence, we suggested that soil carbon and nitrogen sources were the key factors correlated with changes in the vertical pattern of diazotroph abundance. Biochar induced the dominant diazotroph community succession and increased soil carbon content and pH, which contributed to the BNF activity. Changes in the BNF activity were driven by the variation in diazotroph community structure.

Funder

the national natural science foundation of china

the national key r&d program of china

china agriculture research system of mof and mara

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3