Effects of Different Conditioners on Soil Microbial Community and Labile Organic Carbon Fractions under the Combined Application of Swine Manure and Straw in Black Soil

Author:

Zheng Shuang1,Wu Jinggui1,Sun Liming1

Affiliation:

1. College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, China

Abstract

The return of straw and manure to agricultural fields can impact soil organic carbon (SOC) and biological properties. However, there is a lack of research on how to use swine manure, maize straw, and various conditioners together affects soil bacterial and fungal populations. This study aimed to investigate six treatments, namely, only maize straw (S00), maize straw combined with swine manure (S0Z), maize straw combined with biochar and swine manure (SCZ), maize straw combined with boron slag and swine manure (SBZ), maize straw combined with biological agent and swine manure (SJZ), and maize straw combined with bio-organic fertilizer and swine manure (SFZ). The results showed that after the two-year return, all treatments increased the SOC content in 2023, which was 12.55–26.89% higher than S00. And the SCZ treatment significantly increased the soil organic carbon (SOC), dissolved organic carbon (DOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) content by 26.89%, 25.44%, 56.88%, 16.08%, and 43.54%, compared to S00. A redundancy analysis (RDA) showed that the continuous application of manure, maize straw, and conditioners has a positive impact on the diversity and abundance of soil microbial communities, enhancing the accumulation of soil carbon. Furthermore, our research revealed that soil fungi exhibited higher sensitivity in soil carbon composition following the addition of manure, straw, and conditioners to agricultural fields than bacteria. In conclusion, the addition of different conditioners to the fields is beneficial to biodiversity conservation from the perspective of achieving soil carbon storage and soil protection. Our findings suggested that the combination of maize straw, biochar, and swine manure was been proven to be the most effective treatment for increasing labile organic carbon fractions and enhancing the microbial community.

Funder

National Key Research and Development Plan Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3