Author:
Xin Hongjuan,Yang Jiao,Lu Yuanyuan,Xiao Hekang,Wang Haitao,Eltohamy Kamel M.,Zhu Xueqi,Liu Chunlong,Fang Yunying,Ye Ye,Liang Xinqiang
Abstract
AbstractEmergent plants have been remarkably effective in reducing phosphorus (P) discharge from ecological ditches; however, the treatment and recycling of these residues is a great challenge. In this study, magnetic biochars (MBs, i.e., MB-A, MB-C, and MB-T) were fabricated from three emergent plant residues (Acorus calamus L., Canna indica L., and Thalia dealbata Fraser, respectively) and modified with Fe(II)/Fe(III). Scanning electron microscopy-energy dispersive spectroscopy and X-ray diffraction spectra confirmed the successful loading of Fe3O4 and FeO(OH) onto the surfaces of the MBs. Batch adsorption experiments showed that MBs exhibited a higher P adsorption capacity than that of the raw biochars. Within the range of 0.8–43.0 mg L−1 in solution, the adsorption capacities of P by MB-A, MB-C, and MB-T were 304.6–5658.8, 314.9–6845.6, and 292.8–5590.0 mg kg−1, with adsorption efficiencies of 95.2–32.9%, 98.4–39.8%, and 91.5–32.5%, respectively. The primary mechanisms that caused P to adsorb onto the MBs were inner-sphere complexation and electrostatic attraction. Low pH conditions were more beneficial for the P adsorption of the MBs, while co-existing anions had a negative impact with the following order: HCO3− > SO42− > Cl−≈NO3−. The P-31 nuclear magnetic resonance results further demonstrated that the main adsorbed P species on the MBs was orthophosphate, followed by orthophosphate monoesters and DNA. Overall, MBs offer a resource utilization strategy for emergent plant residues and P-laden MBs are promising alternative P fertilizers.
Graphical Abstract
Funder
Key Research and Development Project of Science and Technology Department of Zhejiang Province
Key Laboratory in Science and Technology Development Project of Suzhou
Key Technologies Research and Development Program
Bingtuan Science and Technology Program
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献