1. Ambrosio L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math. 159(1), 51–67 (2001)
2. Ambrosio L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10(2–3), 111–128 (2002)
3. Björn, A., Björn, J.: Nonlinear potential theory in metric spaces (to appear)
4. Björn, A., Björn, J., Parviainen, M.: Lebesgue points and the fundamental convergence theorem for superharmonic functions. Rev. Mat. Iberoam. (to appear)
5. Björn A., Björn J., Shanmugalingam N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. Houst. Math. J. 34(4), 1197–1211 (2008)