The bounded variation capacity and Sobolev-type inequalities on Dirichlet spaces
Author:
Xie Xiangyun1, Liu Yu1, Li Pengtao2, Huang Jizheng3
Affiliation:
1. School of Mathematics and Physics, University of Science and Technology Beijing , Beijing 100083 , China 2. College of Mathematics, Qingdao University , Qingdao , Shandong 266071 , China 3. School of Science, Beijing University of Posts and Telecommunications , Beijing 100876 , P.R. China
Abstract
Abstract
In this article, we consider the bounded variation capacity (BV capacity) and characterize the Sobolev-type inequalities related to BV functions in a general framework of strictly local Dirichlet spaces with a doubling measure via the BV capacity. Under a weak Bakry-Émery curvature-type condition, we give the connection between the Hausdorff measure and the Hausdorff capacity, and discover some capacitary inequalities and Maz’ya-Sobolev inequalities for BV functions. The De Giorgi characterization for total variation is also obtained with a quasi-Bakry-Émery curvature condition. It should be noted that the results in this article are proved if the Dirichlet space supports the weak
(
1
,
2
)
\left(1,2)
-Poincaré inequality instead of the weak
(
1
,
1
)
\left(1,1)
-Poincaré inequality compared with the results in the previous references.
Publisher
Walter de Gruyter GmbH
Reference45 articles.
1. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces I: Sobolev-type inequalities, J. Funct. Anal. 278 (2020), no. 11, Paper No. 108459, 48 pp. 2. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations 59 (2020), no. 3, Paper No. 103, 32 pp. 3. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces IV: Nested fractals, 2018, preprint. 4. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces V: BV functions in infinite-dimensional spaces, 2018, preprint. 5. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces VI: Local and non-local forms, 2018, preprint.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|