Abstract
AbstractIn this paper we study G-surfaces, a rather unknown surface class originally defined by Calapso, and show that the coordinate surfaces of a Guichard net are G-surfaces. Based on this observation, we present distinguished Combescure transformations that provide a duality for Guichard nets. Another class of special Combescure transformations is then used to construct a Bäcklund-type transformation for Guichard nets. In this realm a permutability theorem for the dual systems is proven.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Bianchi, L.: Lezioni di Geometria Differenziale. Spoerri, Pisa (1894)
2. Bianchi, L.: Le trasformazioni di Ribaucour dei sistemi $$n$$-pli ortogonali e il teorema generale di permutabilità. Ann. Mat. 3(27), 183–257 (1918)
3. Bianchi, L.: Le trasformazioni di Ribaucour dei sistemi $$n$$-pli ortogonali e il teorema di permutabilità. Annali di Mat. 3(28), 187–234 (1919)
4. Burstall, F.E., Hertrich-Jeromin, U., Suyama, Y.: Curvilinear coordinates on generic conformally flat hypersurfaces and constant curvature 2-metrics. J. Math. Soc. Jpn. 70(2), 617–649 (2018)
5. Calapso, P.: Alcune superficie di Guichard e le relative trasformazioni. Ann. Mat. 3(11), 201–251 (1904)