A Tighter Relaxation for the Relative Pose Problem Between Cameras

Author:

Garcia-Salguero MercedesORCID,Briales JesusORCID,Gonzalez-Jimenez JavierORCID

Abstract

AbstractThis paper tackles the resolution of the Relative Pose problem with optimality guarantees by stating it as an optimization problem over the set of essential matrices that minimizes the squared epipolar error. We relax this non-convex problem with its Shor’s relaxation, a convex program that can be solved by off-the-shelf tools. We follow the empirical observation that redundant but independent constraints tighten the relaxation. For that, we leverage equivalent definitions of the set of essential matrices based on the translation vectors between the cameras. Overconstrained characterizations of the set of essential matrices are derived by the combination of these definitions. Through extensive experiments on synthetic and real data, our proposal is empirically proved to remain tight and to require only 7 milliseconds to be solved even for the overconstrained formulations, finding the optimal solution under a wide variety of configurations, including highly noisy data and outliers. The solver cannot certify the solution only in very extreme cases, e.g.noise $$100~{\texttt {pix}} $$ 100 pix and number of pair-wise correspondences under 15. The proposal is thus faster than other overconstrained formulations while being faster than the minimal ones, making it suitable for real-world applications that require optimality certification.

Funder

Ministerio de Educación, Cultura y Deporte

Ministerio de Ciencia e Innovación

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Minimal Solvers for Relative Pose Estimation with a Known Relative Rotation Angle;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

2. Fast certifiable relative pose estimation with gravity prior;Artificial Intelligence;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3