Building FAIR Functionality: Annotating Events in Time Series Data Using Hierarchical Event Descriptors (HED)

Author:

Robbins KayORCID,Truong Dung,Jones Alexander,Callanan Ian,Makeig Scott

Abstract

AbstractHuman electrophysiological and related time series data are often acquired in complex, event-rich environments. However, the resulting recorded brain or other dynamics are often interpreted in relation to more sparsely recorded or subsequently-noted events. Currently a substantial gap exists between the level of event description required by current digital data archiving standards and the level of annotation required for successful analysis of event-related data across studies, environments, and laboratories. Manifold challenges must be addressed, most prominently ontological clarity, vocabulary extensibility, annotation tool availability, and overall usability, to allow and promote sharing of data with an effective level of descriptive detail for labeled events. Motivating data authors to perform the work needed to adequately annotate their data is a key challenge. This paper describes new developments in the Hierarchical Event Descriptor (HED) system for addressing these issues. We recap the evolution of HED and its acceptance by the Brain Imaging Data Structure (BIDS) movement, describe the recent release of HED-3G, a third generation HED tools and design framework, and discuss directions for future development. Given consistent, sufficiently detailed, tool-enabled, field-relevant annotation of the nature of recorded events, prospects are bright for large-scale analysis and modeling of aggregated time series data, both in behavioral and brain imaging sciences and beyond.

Funder

Army Research Laboratory

National Institutes of Health

Swartz Foundation

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,General Neuroscience,Software

Reference34 articles.

1. Beniczky, S., Aurlien, H., Brøgger, J. C., Fuglsang-Frederiksen, A., Martins-da-Silva, A., Trinka, E., Visser, G., Rubboli, G., Hjalgrim, H., Stefan, H., Rosén, I., Zarubova, J., Dobesberger, J., Alving, J., Andersen, K. V., Fabricius, M., Atkins, M. D., Neufeld, M., Plouin, P., … & Wolf, P. (2013). Standardized Computer-based Organized Reporting of EEG: SCORE. Epilepsia, 54, 1112–1124. https://doi.org/10.1111/epi.12135

2. Beniczky, S., Aurlien, H., Brøgger, J. C., Hirsch, L. J., Schomer, D. L., Trinka, E., Pressler, R. M., Wennberg, R., Visser, G. H., Eisermann, M., Diehl, B., Lesser, R. P., Kaplan, P. W., Nguyen The Tich, S., Lee, J. W., Martins-da-Silva, A., Stefan, H., Neufeld, M., Rubboli, G., … & Herman, S. T. (2017). Standardized computer-based organized reporting of EEG: SCORE – Second version. Clinical Neurophysiology, 128, 2334–2346. https://doi.org/10.1016/j.clinph.2017.07.418

3. Bigdely-Shamlo, N. (2014). Combining EEG Source Dynamics Results across Subjects. PhD, University of California, San Diego.

4. Bigdely-Shamlo, N., Cockfield, J., Makeig, S., Rognon, T., La Valle, C., Miyakoshi, M., & Robbins, K. A. (2016). Hierarchical Event Descriptors (HED): Semi-structured tagging for real-world events in large-scale EEG. Frontiers in Neuroinformatics, 10. https://doi.org/10.3389/fninf.2016.00042

5. Bigdely-Shamlo, N., Kreutz-Delgado, K., Robbins, K., Miyakoshi, M., Westerfield, M., Bel-Bahar, T., Kothe, C., Hsi, J., & Makeig, S. (2013). Hierarchical Event Descriptor (HED) tags for analysis of event-related EEG studies. In: 2013 IEEE Global Conference on Signal and Information Processing. pp. 1–4.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3