Analytical Green’s functions for continuum spectra

Author:

Megías EugenioORCID,Quirós Mariano

Abstract

Abstract Green’s functions with continuum spectra are a way of avoiding the strong bounds on new physics from the absence of new narrow resonances in experimental data. We model such a situation with a five-dimensional model with two branes along the extra dimension z, the ultraviolet (UV) and the infrared (IR) one, such that the metric between the UV and the IR brane is AdS5, thus solving the hierarchy problem, and beyond the IR brane the metric is that of a linear dilaton model, which extends to z → ∞. This simplified metric, which can be considered as an approximation of a more complicated (and smooth) one, leads to analytical Green’s functions (with a mass gap mg ∼ TeV and a continuum for s >$$ {m}_g^2 $$ m g 2 ) which could then be easily incorporated in the experimental codes. The theory contains Standard Model gauge bosons in the bulk with Neumann boundary conditions in the UV brane. To cope with electroweak observables the theory is also endowed with an extra custodial gauge symmetry in the bulk, with gauge bosons with Dirichlet boundary conditions in the UV brane, and without zero (massless) modes. All Green’s functions have analytical expressions and exhibit poles in the second Riemann sheet of the complex plane at s = $$ {M}_n^2 $$ M n 2 − iMnΓn, denoting a discrete (infinite) set of broad resonances with masses (Mn) and widths (Γn). For gauge bosons with Neumann or Dirichlet boundary conditions, the masses and widths of resonances satisfy the (approximate) equation s = 4$$ {m}_g^2{\mathcal{W}}_n^2 $$ m g 2 W n 2 [±(1 + i)/4], where $$ \mathcal{W} $$ W n is the n-th branch of the Lambert function.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference52 articles.

1. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

2. Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

3. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

4. CMS collaboration, Search for resonant t$$ \overline{\mathrm{t}} $$ production in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, JHEP 04 (2019) 031 [arXiv:1810.05905] [INSPIRE].

5. ATLAS collaboration, Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 092004 [arXiv:1902.10077] [INSPIRE].

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Holography of linear dilaton spacetimes from the bottom up;Physical Review D;2024-05-10

2. Drell-Yan bounds on gapped continuum spectra;Journal of High Energy Physics;2024-04-18

3. Cosmological dark matter from a bulk black hole;Physical Review D;2023-06-12

4. Continuum effective field theories, gravity, and holography;Physical Review D;2023-05-19

5. Continuum spectra from warped dimensions;Nuclear and Particle Physics Proceedings;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3