Abstract
Abstract
Recently, Harvey and Wu proposed a suitable Hecke operator for vector-valued SL(2, ℤ) modular forms to connect the characters of different 2d rational conformal field theories (RCFTs). We generalize such an operator to the 2d fermionic RCFTs and call it fermionic Hecke operator. The new Hecke operator naturally maps the Neveu-Schwarz (NS) characters of a fermionic theory to the NS characters of another fermionic theory. Mathematically, it is the natural Hecke operator on vector-valued Γθ modular forms of weight zero. We find it can also be extended to $$ \overset{\sim }{\textrm{NS}} $$
NS
~
and Ramond (R) sectors by combining the characters of the two sectors together. We systematically study the fermionic Hecke relations among 2d fermionic RCFTs with up to five NS characters and find that almost all known supersymmetric RCFTs can be realized as fermionic Hecke images of some simple theories such as supersymmetric minimal models. We also study the coset relations between fermionic Hecke images with respect to c = 12k holomorphic SCFTs.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On intermediate Lie algebra $$E_{7+1/2}$$;Letters in Mathematical Physics;2024-01-06