On intermediate Lie algebra $$E_{7+1/2}$$

Author:

Lee Kimyeong,Sun KaiwenORCID,Wang Haowu

Abstract

Abstract$$E_{7+1/2}$$ E 7 + 1 / 2 is an intermediate Lie algebra filling a hole between $$E_7$$ E 7 and $$E_8$$ E 8 in the Deligne–Cvitanović exceptional series. It was found independently by Mathur, Muhki, Sen in the classification of 2d RCFTs via modular linear differential equations (MLDE) and by Deligne, Cohen, de Man in representation theory. In this paper we propose some new vertex operator algebras (VOA) associated with $$E_{7+1/2}$$ E 7 + 1 / 2 and give some useful information at small levels. We conjecture that the affine VOA $$(E_{7+1/2})_k$$ ( E 7 + 1 / 2 ) k is rational if and only if the level k is at most 5, and provide some evidence from the viewpoint of MLDE. We propose a conjectural Weyl dimension formula for infinitely many irreducible representations of $$E_{7+1/2}$$ E 7 + 1 / 2 , which generates almost all irreducible representations of $$E_{7+1/2}$$ E 7 + 1 / 2 with level $$k\le 4$$ k 4 . More concretely, we propose the affine VOA $$E_{7+1/2}$$ E 7 + 1 / 2 at level 2 and the rank-two instanton VOA associated with $$E_{7+1/2}$$ E 7 + 1 / 2 . We compute the VOA characters and provide some coset constructions. These generalize the previous works of Kawasetsu for affine VOA $$E_{7+1/2}$$ E 7 + 1 / 2 at level 1 and of Arakawa–Kawasetsu at level $$-5$$ - 5 . We then predict the conformal weights of affine VOA $$E_{7+1/2}$$ E 7 + 1 / 2 at level 3, 4, 5.

Funder

KIAS

National Research Foundation of Korea Grant

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Arakawa, T.: Chiral algebras of class $$\cal{S}$$ and Moore–Tachikawa symplectic varieties. Preprint (2018). arXiv:1811.01577

2. Arakawa, T., Kawasetsu, K.: Quasi-lisse vertex algebras and modular linear differential equations. In: Lie Groups, Geometry, and Representation Theory, volume 326 of Progr. Math., pp. 41–57. Springer, Cham (2018)

3. Arakawa, T., Moreau, A.: Joseph ideals and lisse minimal $$W$$-algebras. J. Inst. Math. Jussieu 17(2), 397–417 (2018)

4. Bae, J.-B., Duan, Z., Lee, K., Lee, S., Sarkis, M.: Fermionic rational conformal field theories and modular linear differential equations. PTEP 2021(8), 08B104 (2021)

5. Beem, C., Rastelli, L.: Vertex operator algebras, Higgs branches, and modular differential equations. JHEP 08, 114 (2018)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Looking for the G2 Higgs branch of 4D rank 1 SCFTs;Journal of High Energy Physics;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3