Causality constraints in Quadratic Gravity

Author:

Edelstein José D.ORCID,Ghosh Rajes,Laddha Alok,Sarkar Sudipta

Abstract

Abstract Classifying consistent effective field theories for the gravitational interaction has recently been the subject of intense research. Demanding the absence of causality violation in high energy graviton scattering processes has led to a hierarchy of constraints on higher derivative terms in the Lagrangian. Most of these constraints have relied on analysis that is performed in general relativistic backgrounds, as opposed to a generic solution to the equations of motion which are perturbed by higher curvature operators. Hence, these constraints are necessary but may not be sufficient to ensure that the theory is consistent. In this context, we explore the so-called CEMZ causality constraints on Quadratic Gravity in a space of shock wave solutions beyond GR. We show that the Shapiro time delay experienced by a graviton is polarization-independent and positive, regardless of the strength of the gravitational couplings. Our analysis shows that as far as the causality constraints are concerned, albeit inequivalent to General Relativity due to additional propagating modes, Quadratic Gravity is causal as per as the diagnostic proposed by CEMZ.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Charged black holes in quadratic gravity;Physical Review D;2024-08-30

2. Tilt in quadratic gravity;The European Physical Journal C;2024-08-21

3. Regge constraints on local four-point scattering amplitudes of massive particles with spin;Journal of High Energy Physics;2024-05-10

4. Quadratic gravity in analogy to quantum chromodynamics: Light fermions in its landscape;Physical Review D;2024-04-03

5. Massive gravity is not positive;Physical Review D;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3