Regge constraints on local four-point scattering amplitudes of massive particles with spin

Author:

Chowdhury Subham Dutta,Kumar Vipul,Kundu Suman,Rahaman Asikur

Abstract

Abstract In this work, we classify all the possible local four-point couplings relevant for tree-level flat space 2 → 2 scattering of external massive particles of spin one and spin two which do not grow faster than s2 at large s and fixed t. This kinematic constraint on local growth of tree-level S-matrices is known as Classical Regge Growth criteria or CRG [1]. We first construct the spin one and spin two tree-level contact S-matrices as modules of polarisation tensors and momenta over the ring of polynomials generated by Mandelstam invariants. We then consider a general scattering process where the external scattering particles are of different masses but of same spin and constrain this space to obtain a finite number of CRG allowed local Lagrangians. Our concrete results are primarily for D ≥ 8 but the process outlined is easily generalised to lower dimensions to include low dimensional parity violating structures. The space of CRG allowed structures reduces when we specialise to identical scattering and restrict to parity even couplings in D = 4. We show that tree-level scattering amplitudes involving exchange diagrams and contact terms in de Rham-Gabadadze-Tolley massive gravity (dRGT) violate CRG unless the parameters of the theory take special values. The CRG allowed S-matrices, in the context of large N conformal field theories (CFTs), can also be interpreted as bulk AdS counterterms consistent with Chaos bound. Our classified structures therefore can be thought of as ambiguities arising in the context of conformal field theory inversion formula for four point functions of unconserved spin one and spin two operators in large N CFTs.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3