Author:
Bringmann P.,Carstensen C.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference30 articles.
1. Adler, J.H., Manteuffel, T.A., McCormick, S.F., Nolting, J.W., Ruge, J.W., Tang, L.: Efficiency based adaptive local refinement for first-order system least-squares formulations. SIAM J. Sci. Comput. 33(1), 1–24 (2011)
2. Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.: Each $$H^{1/2}$$ H 1 / 2 -stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in $${\mathbb{R}}^d$$ R d . ESAIM Math. Model. Numer. Anal. 47(4), 1207–1235 (2013)
3. Bartels, S., Carstensen, C., Dolzmann, G.: Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99(1), 1–24 (2004)
4. Becker, R., Mao, S.: Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations. SIAM J. Numer. Anal. 49(3), 970–991 (2011)
5. Berndt, M., Manteuffel, T.A., McCormick, S.F.: Local error estimates and adaptive refinement for first-order system least squares (FOSLS). Electron. Trans. Numer. Anal. 6, 35–43 (1997, (electronic) [Special issue on multilevel methods (Copper Mountain, CO, 1997)]
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献