Discrete Helmholtz Decompositions of Piecewise Constant and Piecewise Affine Vector and Tensor Fields

Author:

Bringmann Philipp,Ketteler Jonas W.,Schedensack Mira

Abstract

AbstractDiscrete Helmholtz decompositions dissect piecewise polynomial vector fields on simplicial meshes into piecewise gradients and rotations of finite element functions. This paper concisely reviews established results from the literature which all restrict to the lowest-order case of piecewise constants. Its main contribution consists of the generalization of these decompositions to 3D and of novel decompositions for piecewise affine vector fields in terms of Fortin–Soulie functions. While the classical lowest-order decompositions include one conforming and one nonconforming part, the decompositions of piecewise affine vector fields require a nonconforming enrichment in both parts. The presentation covers two and three spatial dimensions as well as generalizations to deviatoric tensor fields in the context of the Stokes equations and symmetric tensor fields for the linear elasticity and fourth-order problems. While the proofs focus on contractible domains, generalizations to multiply connected domains and domains with non-connected boundary are discussed as well.

Funder

Universität Leipzig

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3