Improved rates for a space–time FOSLS of parabolic PDEs

Author:

Gantner Gregor,Stevenson Rob

Abstract

AbstractWe consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components $$(u_1,\textbf{u}_2)=(u,-\nabla _\textbf{x} u)$$ ( u 1 , u 2 ) = ( u , - x u ) . The corresponding operator is boundedly invertible between a Hilbert space U and a Cartesian product of $$L_2$$ L 2 -type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides $$L_2$$ L 2 -norms of $$\nabla _\textbf{x} u_1$$ x u 1 and $$\textbf{u}_2$$ u 2 , the (graph) norm of U contains the $$L_2$$ L 2 -norm of $$\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2$$ t u 1 + div x u 2 . When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of $$\textbf{u}_2$$ u 2 . In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions u. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of $$\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2$$ t u 1 + div x u 2 , i.e., of the forcing term $$f=(\partial _t-\Delta _x)u$$ f = ( t - Δ x ) u . Numerical results show significantly improved convergence rates.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3