Abstract
AbstractWe study properties of spectral minimal partitions of metric graphs within the framework recently introduced in Kennedy et al. (Calc Var 60:6, 2021). We provide sharp lower and upper estimates for minimal partition energies in different classes of partitions; while the lower bounds are reminiscent of the classic isoperimetric inequalities for metric graphs, the upper bounds are more involved and mirror the combinatorial structure of the metric graph as well. Combining them, we deduce that these spectral minimal energies also satisfy a Weyl-type asymptotic law similar to the well-known one for eigenvalues of quantum graph Laplacians with various vertex conditions. Drawing on two examples we show that in general no second term in the asymptotic expansion for minimal partition energies can exist, but show that various kinds of behaviour are possible. We also study certain aspects of the asymptotic behaviour of the minimal partitions themselves.
Funder
Deutsche Forschungsgemeinschaft
Fundação para a Ciência e a Tecnologia
European Cooperation in Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献