Author:
Stojnić Srđan,Kovačević Branislav,Kebert Marko,Vasić Verica,Vuksanović Vanja,Trudić Branislav,Orlović Saša
Abstract
AbstractUnderstanding intra-specific variation in leaf functional traits is one of the key requirements for the evaluation of species adaptive capacity to ongoing climate change, as well as for designing long-term breeding and conservation strategies. Hence, data of 19 functional traits describing plant physiology, antioxidant properties, anatomy and morphology were determined on 1-year-old seedlings of wild cherry (Prunus avium L.) half-sib lines. The variability within and among half-sib lines, as well as the estimation of multi-trait association, were examined using analysis of variance (ANOVA) followed by Tukey's honestly significant difference test and multivariate analyses: principal component analysis (PCA), canonical discriminant analysis (CDA) and stepwise discriminant analysis (SDA). Pearson’s correlation coefficient was used to evaluate linear correlation between the study parameters. The results of the ANOVA showed the presence of statistically significant differences (P < 0.01) among half-sib lines for all study traits. The differences within half-sib lines, observed through the contribution of the examined sources of variation to the total variance (%), had higher impact on total variation in the majority of the examined traits. Pearson’s correlation analysis and PCA showed strong relationships between gas exchange in plants and leaf size and stomatal density, as well as between leaf biomass accumulation, intercellular CO2 concentration and parameters related to antioxidant capacity of plants. Likewise, the results of SDA indicate that transpiration and stomatal conductance contributed to the largest extent, to the discrimination of the wild cherry half-sib lines. In addition, PCA and CDA showed separation of the wild cherry half-sib lines along the first principal component and first canonical variable with regards to humidity of their original sites. Multiple adaptive differences between the wild cherry half-sib lines indicate high potential of the species to adapt rapidly to climate change. The existence of substantial genetic variability among the wild cherry half-sib lines highlights their potential as genetic resources for reforestation purposes and breeding programmes.
Publisher
Springer Science and Business Media LLC
Reference85 articles.
1. Baltas E (2007) Spatial distribution of climatic indices in northern Greece. Meteorol Appl 14:69–78
2. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76
3. Bojović M, Nikolić N, Borišev M, Pajević S, Župunski M, Horák R, Pilipović A, Orlović S, Stojnić S (2017) The diurnal time course of leaf gas exchange parameters of pedunculate oak seedlings subjected to experimental drought conditions. Balt for 23:584–594
4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
5. Bussotti F, Pancrazi M, Matteucci G, Gerosa G (2005) Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol 25:211–219
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献