Response of nitrogen fractions in the rhizosphere and bulk soil to organic mulching in an urban forest plantation

Author:

Sun Xiaodan,Wang Gang,Ye Yuqian,Ma Qingxu,Guan Qingwei,Jones Davey L.

Abstract

AbstractNitrogen is an essential component in forest ecosystem nutrient cycling. Nitrogen fractions, such as dissolved nitrogen, ammonium, nitrate, and microbial biomass nitrogen, are sensitive indicators of soil nitrogen pools which affect soil fertility and nutrient cycling. However, the responses of nitrogen fractions in forest soils to organic mulching are less well understood. The rhizosphere is an important micro-region that must be considered to better understand element cycling between plants and the soil. A field investigation was carried out on the effect of mulching soil in a 15-year-old Ligustrum lucidum urban plantation. Changes in total nitrogen and nitrogen fractions in rhizosphere and bulk soil in the topsoil (upper 20 cm) and in the subsoil (20–40 cm) were evaluated following different levels of mulching, in addition to nitrogen contents in fine roots, leaves, and organic mulch. The relationships between nitrogen fractions and other measured variables were analysed. Organic mulching had no significant effect on most nitrogen fractions except for the rhizosphere microbial biomass nitrogen (MBN), and the thinnest (5 cm) mulching layer showed greater effects than other treatments. Rhizosphere MBN was more sensitive to mulching compared to bulk soil, and was more affected by soil environmental changes. Season and soil depth had more pronounced effects on nitrogen fractions than mulching. Total nitrogen and dissolved nitrogen were correlated to soil phosphorus, whereas other nitrogen fractions were strongly affected by soil physical properties (temperature, water content, bulk density). Mulching also decreased leaf nitrogen content, which was more related to soil nitrogen fractions (except for MBN) than nitrogen contents in either fine roots or organic mulch. Frequent applications of small quantities of organic mulch contribute to nitrogen transformation and utilization in urban forests.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3