Soil Carbon and Nitrogen Pools and Their Storage Characteristics under Different Vegetation Restoration Types on the Loess Plateau of Longzhong, China

Author:

Xie Mingjun1,Yuan Jianyu1,Liu Shuainan1,Xu Guorong1,Lu Yanhua1,Yan Lijuan2,Li Guang1

Affiliation:

1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China

2. College of Agriculture, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Soil carbon and nitrogen pools are crucial for maintaining the balance of carbon and nitrogen cycling in ecosystems and also for reducing the impacts of global climate change. However, current research lacks an understanding of the effects of long-term vegetation restoration on soil carbon and nitrogen pools and their storage in vulnerable ecosystems. Therefore, we studied the characteristics of soil carbon (soil organic carbon, microbial biomass carbon, dissolved organic carbon) and nitrogen pools (total nitrogen, ammonium nitrogen, nitrate nitrogen) and their storage under four types of vegetation restoration (Stipa bungeana Trin., SB; Caragana korshinskii Kom., CK; Xanthoceras sorbifolia Bunge., XS; Picea asperata Mast., PA) in the Longzhong Loess Plateau area. We found that the carbon and nitrogen pools in the 0–40 cm soil layer under the XS and PA vegetation restoration types were higher compared to those under the SB and CK vegetation, and the values of soil ammonium–nitrogen ratios ranged from 0.72 to 0.83 under different vegetation types. Carbon and nitrogen interactions were stronger in the 0–40 cm soil under PA vegetation, which had significantly higher soil carbon (49.06 t·ha−1) and nitrogen (1.78 t·ha−1) storage than did the other vegetation types. We also found that soil carbon and nitrogen stores differed among different types of vegetation restoration. These elements were mainly distributed in soils from 0 to 20 cm depth, where the carbon and nitrogen pools in soils from 0 to 10 cm exceeded those in the lower layers. Furthermore, we discovered that redundancy analysis (RDA) supported by soil enzyme activity and physical properties significantly explained the variation in soil carbon and nitrogen triggered by vegetation restoration. According to this research, the stability and transformation of soil carbon and nitrogen pools in the region can be influenced by various forms of vegetation restoration. Additionally, the findings highlight that forest vegetation restoration can be a successful strategy for effectively sequestering soil carbon and nitrogen within the Longzhong Loess Plateau area.

Funder

Outstanding Doctoral Dissertation Cultivation Project of Gansu Agricultural University

Industrial Support Project of Gansu Higher Education Institutions

Key Research and Development Program of Gansu Province

Financial Special Project of Gansu Province, China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3