Interaction between reactive oxygen species and hormones during the breaking of embryo dormancy in Sorbus pohuashanensis by exogenous nitric oxide

Author:

Wang Hao,Tang Shuoran,Wang Jianan,Shen Hailong,Yang Ling

Abstract

AbstractThe breaking of dormancy mediated by reactive nitrogen species (RNS) is related to the accumulation of reactive oxygen species (ROS) in germinating embryos but the underlying mechanism is unclear. The objectives of this study were: (1) to explore the relationship between RNS-mediated dormancy release and ROS accumulation in germinating embryos of Sorbus pohuashanensis; and, (2) to investigate the relationships among germination time, ROS metabolism, and endogenous hormone synthesis. We studied the effects of exogenous nitric oxide (NO) donor sodium nitroprusside (SNP), the NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), abscisic acid (ABA), the exogenous ethylene donor ethrel, and the ethylene receptor inhibitor 2,5-norbornadien (NBD) on embryo germination and seedling growth. Embryos were released from dormancy by pretreatment with NO or ethylene, which was related to increased ethylene biosynthesis and decreased ABA levels. Breaking of dormancy by SNP was related to increased levels of ethylene, hydrogen peroxide, and glutathione, increased activities of superoxide dismutase and glutathione peroxidase, and decreased levels of ABA, superoxide anions, and malondialdehyde. These effects of nitric oxide were especially significant in seedling hypocotyls and radicles. These results demonstrate that NO can break S. pohuashanensis embryo dormancy by inducing ethylene biosynthesis, and that this signalling pathway is closely related to ROS accumulation and the antioxidant defence response.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3