Nitric Oxide Regulates Seed Germination by Integrating Multiple Signalling Pathways

Author:

Zhang Yue1,Wang Ruirui1ORCID,Wang Xiaodong1,Zhao Caihong1,Shen Hailong12,Yang Ling1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China

2. Research Center of Korean Pine Engineering and Technology, National Forestry and Grassland Administration, Harbin 150040, China

Abstract

Seed germination is of great significance for plant development and crop yield. Recently, nitric oxide (NO) has been shown to not only serve as an important nitrogen source during seed development but also to participate in a variety of stress responses in plants to high salt, drought, and high temperature. In addition, NO can affect the process of seed germination by integrating multiple signaling pathways. However, due to the instability of NO gas activity, the network mechanism for its fine regulation of seed germination remains unclear. Therefore, this review aims to summarize the complex anabolic processes of NO in plants, to analyze the interaction mechanisms between NO-triggered signaling pathways and different plant hormones such as abscisic acid (ABA) and gibberellic acid (GA), ethylene (ET) and reactive oxygen species (ROS) signaling molecules, and to discuss the physiological responses and molecular mechanisms of seeds during the involvement of NO in abiotic stress, so as to provide a reference for solving the problems of seed dormancy release and improving plant stress tolerance.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference160 articles.

1. Seed germination and vigor: Ensuring crop sustainability in a changing climate;Reed;Heredity,2022

2. First off the mark: Early seed germination;Weitbrecht;J. Exp. Bot.,2011

3. Primary seed dormancy: A temporally multilayered riddle waiting to be unlocked;Chahtane;J. Exp. Bot.,2017

4. Seed germination and dormancy;Bewley;Plant Cell,1997

5. A critical update on seed dormancy. I. Primary dormancy1;Hilhorst;Seed Sci. Res.,1995

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3