Seasonal dynamics of soil microbial biomass C and N of Keteleeria fortunei var. cyclolepis forests with different ages

Author:

Wang Yong,Liu Xiongsheng,Chen Fengfan,Huang Ronglin,Deng Xiaojun,Jiang Yi

Abstract

Abstract Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool. It is of great significance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation. In order to explore the temporal dynamics and influencing factors of soil microbial biomass of Keteleeria fortunei var. cyclolepis at different stand ages, the plantation of different ages (young forest, 5 years; middle-aged forest, 22 years; mature forest, 40 years) at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) by chloroform fumigation extraction method. It was found that among the forests of different age, MBC and MBN differed significantly in the 0–10 cm soil layer, and MBN differed significantly in the 10–20 cm soil layer, but there was no significant difference in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer. With increasing maturity of the forest, MBC gradually decreased in the 0–10 cm soil layer and increased firstly and then decreased in the 10–20 cm and 20–40 cm soil layers, and MBN increased firstly and then decreased in all three soil layers. As the soil depth increased, both MBC and MBN gradually decreased for all three forests. The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests, i.e., high in the summer and low in the winter. Correlation analysis showed that MBC was significantly positively correlated with soil organic matter, total nitrogen, and soil moisture, whereas MBN was significantly positively correlated with soil total nitrogen. It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis. The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest, which increased soil microbial biomass and enriched the soil nutrients. However, the soil microbial biomass declined as the middle-age forest continued to grow, and the soil nutrients were reduced in the mature forest.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3